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ON SOME NUMERICAL PROPERTIES OF ARMA PARAMETER ESTIMATION PROCEDURES

1. Josceph Newton
Institute of Statistics,
Texas ASM University

Abstract
This paper reviews the alporithms used by statisticians for
obtaining efficient estimators of the parameters of a univari-
ate autoregressive moving average (ARMA) time series. The
connection of the estimation problem with the problem of pre-
diction is investigated with particular emphasis on the Kalman
filter and modified Cholesky decomposition algorithms. A
result from prediction theory is given which provides a signi~
ficant reduction in the computations needed in Ansley's (1979)
estimation procedure. Finally it is pointed out that there are
many useful facts in the literature of control theory that need
to be investigated by statisticians fnterested in estimation
and prediction problems in linear time series models.

Key Words .
ARMA models, Maximum likelihood estimation, Hi{nimum mean square

error prediction, Kalman filter algorithm, Modified Cholesky

decomposition algorithm

1. INTRODUCTION

Let {e(t),te2}, Z the set of integers, be a
white noise time series of uncorrelated zero
mean random variables having common variance
02. Then the time series {Y(t),teZ)} satisfy-
ing

P q
Y(t) = -2 a(j)Y(e-§)+e(e)+ L B(k)e(t-k) (1.1)
i=1 k=1

is called an autoregressive moving average pro-
cess of order p and q (ARMA(p,q)). If p=0 then
Y(-) 1s a moving average process of order q,
MA(q), while if q=0 Y(+) is an autoregressive
process of order p, AR(p).

Defining a(0)=p(0)=1 and the complex valued poly-
nomials

P 3 q k
3(2)- L “(j)z ’ h(z)= ¢ B(k)z ’
j=0 k=0

we can write (1.1) as
4 q
£ a(j)Y(e-3)= T B(k)e(t~-k)
j=0 k=0

or .

g(L)Y(t)=h(L)e (L),
vhere L is the lag or back shift operator,

LJY(t)-Y(t-j). jeZ. 1If the zeros of g(:) are
outside the unit circle then Y(-) is stationary,
i.e. it can be written as an infinite order
moving average process, while if the zeros of
h(.) are outside the unit circle then Y(-) is
invertible, i.e. it can be written as an infi-

nite order autoregressive process.

The ARMA nodel has beea very useful in 2naly-
zing time series data. Given a sample reali-
zation !¥=(Y(1),....Y(T)) from Y(-) one seeks

estimators §=(&(1)....,&(p))r, é=(é(1),...
B(q))T, and 02 of the parameters a,f, and o2,

as well as memory-t, horizon-h, minimum mean

square error linear predictors and prediction

variances Y(t+h|t), o% h-E{Y(t+h)—Y(t+h|t)}2
1

of Y(t+h) given Y(1),...,Y(t) for a variety of
memories and horizons t=t1....,t2. h-hl.....hz.

T
+ =
Thus Y(t+h|t) A pYp vhere A | minimizes

S(O=E(Y(t+h)-£TY, 12,
and 05 h-SQt h). This gives (see Whittle (1963),
’ ’
p.47) that lt satisfies the normal equations

rY.tét.h-Et.h '

while
2 T -1
T R (O b Ty efe n
T
where gt'h=(RY(t+h-1)....,RY(h)) with RY(V)‘
E(Y(t)Y(t+v)),veZ, and FY ¢ is the (txt) Toeplitz
covariance matrix of !{, l.e. Ty ¢ has (§,k)th
s
element RY(k-j). We can thus define PY N by its
*

first row; FY.t-TOEPL(RY(O).....RY(t-l)).
The usual assumption made for doing estimation

and prediction in ARMA models 1s that c¢(:) (and
thus Y(-)) 1is a Caussian process. Thus the maxi-




“mum 1ikellhood cstimitors é.@. and 07 maximize

the Cauaninn l{kelfhow

-1/2
La,B.0?/Y = m) "4 ry Tl exp (- .YTrY i)
while Y(t+h|t) and oi p are the conditional mean

and variance of Y(t+h) given Y(1),...,Y(t).
In this paper we 1) review n(tomp(n by statlati-
cians to obtain u @. and 32 (or estimators

asympto* fcally equivaleant to them), 2) show how
recent mecthods are closely connected with finding
predictors, aud 3) propose an Improvement of
Ansley's (1979) estimation procedure. This pro-
cedure 18 currently regarded, at least in many
situations, as the most numerically efficient
available. Finally we will be able to compare
the two most popular methods available.

2. APPROXIMATE METHODS

There have been three basic types of procedures
used to estimate the parameters of the ARMA model:
1) estimators that are derived heuristically and
then shown to be asymptotically equivalent to the
MLE, 2) estimators obtained by maximizing a func-
tion asymptotically equivalent to the likelihood
L, and 3) directly maximizing L. The procedures
have evolved as both computing software and hard-
ware have improved.

As an example of a type 1l procedure we conslider
Hannan's (1969) method. The method consists of
1) finding consistent initial estimators g(®

and é(o). 2) performing an alternating proced-
ure of the form u(°)>8(l) B(l)*&(') “(‘)*8(2)

3) combining g(’) 5(2) to obtain asymptotically
effictent 8, 4) B
ing the process by returning to (2) with a re-

+ g. and 5) possibly iterat-

placing a(0),

The initial estimators 6(?) and g{?) are obtained
by noting the following facts about the ARMA
sodel:
1 4
1) L a(j)N(j'V)-o y Voqtl,...,q+p (2.1)
J=0
2) By writing
g(L)Y(t)=h(L)e(t)=Xx(t), (2.2)
we note that X(:)\MA(q,B8,02),1i’e. X(-) 1s an
MA(q) process with parameters B and 02. Thus
by the first equality in (2.2) we have

P
(v)» ¢
" §.,k=0

a(j)u(k)RY(j+v—k).ch, (2.3)

wvhile from the second equality we have

- m— .- e

a-{v|
Ry =) T B()Blkt]v]) 4 |v|<q
k=0 (2.4) !
0 y Ivl>q -

Then defining the consistent sample autocovari-
ances

RT(v)- { lycorvcerivly o Ivf <1,
t=1

g(°) is found by solving (2.1) with RT(v)
replacing RY(V), while 6(0) is obtained by first
using é(“) and RT(-) in (2.3) to obtain con-
sistent estimators Rx(o)(O),....Rxfo)(q) which
are then used in (2.4) to get é(O) via Wilson's
(1969) or Bauer's (1955) algorithm.

Steps 2 and 4 of Hannan's method are performed

in the frequency domain by noting from (2.2)
that the spectral density functions fY(-).

fx(-), and fe(') of Y(*), X(-), and €(-) are
related by (since f (W)= 02/o% , wel[0,27])
lg(e‘"x?-fvm- & Ineet™) |2 =, 0, (2.5)

Then we can rewrite (2.5) as, dropping arguments
for convenience,

|g|2f 2742

Y . Yn</a 1
o2 Zn - Th[? (2.6)
X

£

Y oz 1
B[z = 27 Tg[? @.n

(2n/a?)?[g| 28, . 4r2/e2 1 (2.8)
DN Zn TH[Z '

Thus the right hand sides of (2.6),(2.7), and
(2.8) are in the form of an autoregressive spect-
ral density, and thus for v>0,

q 2r |gl2f - 2
Jz B(J)I — Y 1 Q-vIvy, o 5, ﬁgz ., (2.9)

4 fy 1(j-v)wd'

L a(J)/ e
3=0 Th]

q 2" '8' fY 1(
j-viw
T

- 892, (2.10)

E a(J)[ (2.11)

dv = § g2 .

1=0 v

Now f, can be estimated by the periodogram
£ (W) = 5 L T o,

and since X(° ) - MA(q. g. 02) we have that

~-ivw '7'
x(q Rx(v)c . ;

1
few) = o5 |




4

Then for example, {n an ohvious notatlion, the

otep 3@ « g

8(0)

is done. by solviag (2.9) with
f(0)
X

R fT’ and replacing g, EY' and ix and

the fast Fouri{er tranaform used to calculate a
rectangular sum approximation to the integrals

Then (2.10) is used for é(l) + ;(1) and

8 + a while (2.11) s used for o'1? » g (@),
Fianlly the combination of B(]) and @(2) 1s done
using an analogy with two-stage least squares.

needed.

In a pivotal article, Akaike (1973) noted that
Hannan's method was the same nas one step in
directly maximizing L using the Newton-Raphson
procedure with an approximation to the Hessian
matrix of L. This observation led many re-
searchers to turn their attention to other pos-
sible approaches to directly maximize [. We will
consider two of these in the next section.

As aan example of a type 2 estimation procedure
we consider the method of Box and Jenkins (1970).
-1

Yr Y,TY ) domi-
Thus Box and Jenkins

In large samples the term exp(-%YTF
-

nates the term ‘rY,T| .

suggest maximizing

' 2 - _T-l
L' (g, 8, a2]¥y) = exp(- Y,Ty 1Y)
which can be done ia a aonlinear regression
framework. Thus it can be shown that

T.-1 T 2
Moty = T[] (2.12)

where [e(t)] = E(c(t)IYT, a, g). Thus the Box~

Jenkins procedure consists of replacing -= by
-Q in (2.12) and approximatiag [e(t)] by back-
forecasting.

It is generally agreed that in the case of large
T and/or zeros of h(z) far from the unit circle
that estimation methods of type 1 and type 2
give very reasonable results. However if one
is faced with a situation where the above con-
ditions are not satisfied, then the numerical
properties of the procedures aullify the bene-
fit of their simplicity. Thus iterations oftea
fail to coaverge in a reasonable time and sys-
tems of equations that must be solved become
highly ill-conditioned. Thus there has beea a
need for more numerically stable, exact maxi~
mum likelihood methods.

3. EXACT MAXIMUM LIKELIHOOD .PROCEDURES

With the advent of iterative nonlinear optimi-
zation procedures which require only a starting
value and evaluation of the function to be
optimized for given values of its arguments
(see Denais and More (1977), for example), the
most recent procedures for ARMA parameter esti-
mation have centered on evaluating L for given

values of a, 8, and o2,

In this aection we consider two such methods
for evaluating {: 1) wusing the Kalman filter -
algorithm and 2) uatng covariance matrix de-
composition methods, particularly the Cholesky 1
decomposttion algorithm. The basic purpose of |
these algorithms {s to obtain the one step ashead - ! R‘
I
|
!

prediction errors e(t) = Y(t) - Y(tlt - 1) aad

prediction variances n% =g t=1,..., T

t-1,1"
aiace one con ensily show that
T T ,

r - no2, ity - peft)

' Y,T' =1 t*” .TY,T.T tel ct .

To summarize, the two methods curreatly regarded |

as most numerically efficient for maximizing L

consist of two stages:

1) Find initial estimators as described above
for Hannan's method.

2) VUse an {iterative, derivative free nonlinear
optimization algorithm to find the maximum
likelihood estimators, using either the
Kalman filter algorithm (Akaike (1974),
Harvey and Phillips (1979), Jones (1980),
Pearlman (1980), or Gardner, Harvey, and
Phillips (1980), for example) or the Cho-
lesky decomposition algorithm (see Pagano
and Parzen (1973), Pagano (1976), Phadke
and Kedem (1978), Ansley (1979), Newton
(1980), Newton and Pagano (1981), for ex-
ample) to find the e(t) and o% needed to
evaluate L.

Kalman Filter Algorithm

Consider the following two equations:

Y

Xe+1

e - Ht?t + cht (State Equation)

- st+1?c+1 + Yt+1 (obgervation equation)

where the Y's are unobservable N-vectors, the
§'s are observable M-vectors, Ht' Gt. and St are
kaowa (NxN), (NxL), and (MxN) matrices, and U,
Yt are independent zero mean L and N dimensional
white noise series with known covariance matrices
Qt and Rt'

Then given initial values !0 and Po - var(!o)
one finds the Yt's and Pt - cov(Yt) by the Kal-

man filter algorithm

Yerr = Zenn = 1 GSenrfenr ~ Bend)

Pear = Yeer ™ xt+lst+}wt+l

Zewr " MY Ken "t+ls:+1 1
*Sea¥earSers * Reay)

W = HPHT + G:Q:GI . (3.1)

A number of authors in the statistical litera-

T ~




ture have potfnted out that a simple application
of this algorithm to ARMA models can be made to
obtain the e(t) and ni. *Thua since

Y(t+)) |t+l) = | Y(e+g|e) + sjr.(t+l)-

=1, ..., m-1
P
L a(k)Y(i4m-k|t) + g c(t+l),
kel
j=m
-1
wvhere 8, - 1 and 83 - B(3-1) + I n(k)sj_k.jlz
k=1

and m = max(p, q+l1), we can write the equation
of state

Yoo " H Y +ge(tdl)

where §T - (gl. By ==vs gn), and

H= 0 e

0o 1 0
o 0 1 ... O

.
-

6o 0 0 .. 1
a(m) . . .eo a(l)
wvhere a(j) = 0 {f § > p.

Further, since Y(t+1|t+1) = Y(t+l), we can write
the observational equation

T
Xea1 =5 Yo * Ve o
vhere X, = Y(e+1), ST = (1, 0, ..., 0), and
Vt+l 19 an observational error random variable.

Cholesky Decomposition Algorithm

An (axn) symmetric matrix An 1s positive defi-
nite if and oanly {f it can be written

T
An - LA.nDA.nLA.n *
vhere LA,n
D is a diagonal matrix with positive diagonal

A,n

elements. This s the modified Cholesky decom-
We note that we can also write

the Cholesky decomposition A - M HT

position of An.

y A,0""A 0 where
"A,n - LA,nDA,n but we will consider exclusively
the modified decomposition.

3.2)

is a uanit lower triangular matrix and

The decomposition (3.2) is unique and nested,

-1 -1
i.e. LA,j' nA,j’ LA.j' DA 1 are the (jx3) princi-
pal minors of LA.n DA a* VA’ and D n respec-

tively for § < n. Thus we can dcnotc the (3.k)th
element of LY ¢ and DY ¢ in the decomposition of
’ ’

the (KxK) covariance matrix T X of a time series

Y,

Y(*) aa LY.j,k and DY,j,k

If Y(*) 18 a purely nondcterministic covarfance
atat{ionary time scries with spectral density
function t(.), i.e.

respectively for t < K.

1 4 .
02 = 2n exp(i;(f) log f(w)dw} > 0 ,
then e(1) = Y(1), while

t-1

e(t) = ¥(e) - ¢ L e(t-k), t > 2
1 L A

9% " Dy e, ®
and in fact (Newton and Pagano (1981))

t+h-1
Y(t+h|t) = kEh Lt.c+h,t+h-ke(t+h-k) (3.3)
h-1
2 2 D . (3.8
o ot tn, eena Y eth etk ¢+ (00
Further,
im L - 0 3.5
Un Ly y k-1 B_(1), 32 (3.5)
- 2 06
éi: DYIKQK U- * (3 )

where the 8,,(-) are the cocfficients in the MA(=)
representation of Y(.). While these facts ap-
pear to be known in the literature of control
theory they do not appear to exist in the sta-
tistical literature, at lecast in the general
form of equations (3.3) through (3.6).

Now major simplifications of these equations

occur when Y(.) is an ARMA process. Thus (Pa-

gano and Parzen (1973), Pagano (1976), Newton

(1980)) 1f Y(+) is an MA(q) we have that r‘ 1.k
?

-01f|j-k|>Oandthusl~ljk-01fj-k
*Jd

> 0. Further, Pagano and Parzen (1973) state

in an attempt to fiad Y(t+h|t) and °t p that if

Y(+) - ARMA(p, q, a, B, 02), and one forns the

P

L G(j)Y(t'j)' t>p, then

3=0

X(p+1), ..., X(T) 18 a realization from an
MA(q, 8, 0?) process and one can combine the
MA(q) prediction algorithm with an AR(p) pre-
diction algorithm. Ansley (1979) makes this
same transformation of Y(-) to X(:) to get the
e(t) and oé necessary to evaluate L.

series X(t) =

The methods of Pagano and Parzea (1973) and
Ansley (1979) can be summarized theoretically
by combining the equations (3.3) through (3.6)
above with the following theorem due to Newton
and Pagano (1981).

Theorem 3

Let Y(¢) ~ ARMA(p, q, o, B, 0%) and 2(-)
* AR(p, a, 02) with nssociated covariance matrix

e ” IY.:DY.eLY.c and Ty e =Ly

Thea

sequences T

Dz.tlz,e

A}

1
1
1
atestaestubbe

A



’

Ly,e = Lz elx,e

Dy,e = Dx,¢ »

vhere X, = xu, ..., X(t))T - L;}:Y: has jth

element

X(3) = |Y()) v 3=1
1-1
Ea_ (k)Y(j"k) .J-zv ----P
k=0 -1

P
L a(k)Y(3-k)
k=0
vhere the aj(-) are easily obtafned by perform-
ing the Levinson (1974) recursion for § = p-1,
eeey 1, with ap+1(k) = a(k):

v12>0p

) - 21*1(1) - 01*1(j+1)01+1(j+1-1)
3 1 - aj+1(j+l) ’
123 <p.
Thus .
: (
r =l T a j-m)
1. wemax(1,1-p)3~1
i
x L a, U-R (£-m),1,3>1
f=max(1,1-p) 11 R 1
{-

q-]1-3]
Re(|1-3]) = 02 5 8(k)8 (k+|1~-3]),
k=0

[1-3] <q 1,3 >p

or 1f 1,17> p and |1-j] > q

and
ULy gy =800 3= Loy g 3.7
1im D = g2, (3.8)

X,K,K

K+

Thus e(1l) = X(1), while
min(q,j-~1)
e(t) = X(t) ~ kfl ‘x.:.:-ke("k" t>1

2
% " Dx,e,e ?

and in fact

P
Y(eth|t) = X(t+h{t) - © a(PY(t+h-lt) ,

q i=1
X(t+h|t) = kfhl'x.:+h.t+h-k‘(t+h'k) .
h=1, ..., q
0 h>gq

0 1f1<j<p,i>p,andt -]>q

[ ]
h-1
2 -
%% ,h kf nx,t+h-k,t+h~k
t+h
x i L 2 .
oeon g ZotH LK, bk

Thus to find the one step ahead prediction
errors and varfaonces one nced only compute the

q nonzero elements of the successive rows of Lx

until the convergence properties (3.7) and (3.8)
take effect. Further, oanc can then also find N
the Y(t+h|t) from these same quantities and the

e(*). Note however that to find og b One also
’

Z,t’

be found atmply by noting that the upper (pxp)

principal minor LZ P can be found by invertiag
’

the lower triangular matrix L , while

needs to find the elements of L These can

Z,p

- - >
LZ.j,k y(3-k), 3> k2>p,
where y(0) = 1, y(1), y(2), ... are the coef-
ficients 1in the MA(>) represeatation of Z(-+).
Further, the elements in rows p+l, ... in the
first (p-1) columns of Lz are obtained by

P
- I a(r)L

LGp+j 'k - =1 Z.p+j—r.k ' 1 :' ko< Ps
121,
and
}:LZ.pU.k'O' bik<p.

Thus the predfctors and prediction variances
Y(t+h|t) and oi p can be obtained using either
’

the Kalman filter algorithm or the Cholesky de-
composition algorithm. Also the coavergence
propertles described in the Cholesky algorithm
can be incorporated into the Kalman filter al-
gorithm.

4. DISCUSSION

Thus we have scen that algorithms developed
recently for finding maximum likelihood esti-
mators of ARMA process parameters have essenti-
ally consisted of applylng established algor-
ithms for finding the minimum mean square error
linear one step ahcad predictors and prediction
variances. We have shown how the Cholesky al-
gorithm can be used to find more than one step
ahead predictors and varlances as well. We note
that both the Kalman filter and Cholesky decom-
posit{on algorithm can be extended easily to
the multivariate ARMA case. We also note that
we have not attempted to survey all the recent
work in the ARMA estimatlon area, but rather
have emphasized those algorithms that appear to
be most widely used in the literature.

We consider next the relative speed and stabil-
ity of the Kalman filter and Cholesky decom-
position algorithms. Pearlman (1980) shows that




the aumber of operations aecded to find the e(t)
and o: via the Kalman filter algorithm is ap-

proximately T(2p + 3m + 3), with m = max(p,q+l),
while for the Cholesky algorithm it is

T(p + %(q+1)(q+4)). Thus 1f q > 5 the Kalman
algorithm ia faster.

Now the fact that the Kalman filter algorithm
performs a number of "matrix squaring" oper-

tions (for example “tpt"I {a (3.1) has caused

many investigators to question {ts stability.
However a aumber of authors have supgested meth-
ods for avoiding thease operations (sce Paige
(1976) for example), The Cholesky decomposition
{8 well known for {ts numerical stability (sce
Wilkinson (1967) for example). However more
work 13 needed before a final coaclusion can be
made about which of the two methods {s to be
preferved.

Fiaally we poirt out that there are a variety
of numer{cal methods for analyzing linear time
series models {n the work of control theorists
particularly in a series of papers of Kallath
(see the references in Aasnaes and Kailath
(1973)) that need to be incorporated into the
statistical literature.
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